Detoxification of Benzoxazolinone Allelochemicals from Wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum.
نویسندگان
چکیده
The ability of phytopathogenic fungi to overcome the chemical defense barriers of their host plants is of great importance for fungal pathogenicity. We studied the role of cyclic hydroxamic acids and their related benzoxazolinones in plant interactions with pathogenic fungi. We identified species-dependent differences in the abilities of Gaeumannomyces graminis var. tritici, Gaeumannomyces graminis var. graminis, Gaeumannomyces graminis var. avenae, and Fusarium culmorum to detoxify these allelochemicals of gramineous plants. The G. graminis var. graminis isolate degraded benzoxazolin-2(3H)-one (BOA) and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) more efficiently than did G. graminis var. tritici and G. graminis var. avenae. F. culmorum degraded BOA but not MBOA. N-(2-Hydroxyphenyl)-malonamic acid and N-(2-hydroxy-4-methoxyphenyl)-malonamic acid were the primary G. graminis var. graminis and G. graminis var. tritici metabolites of BOA and MBOA, respectively, as well as of the related cyclic hydroxamic acids. 2-Amino-3H-phenoxazin-3-one was identified as an additional G. graminis var. tritici metabolite of BOA. No metabolite accumulation was detected for G. graminis var. avenae and F. culmorum by high-pressure liquid chromatography. The mycelial growth of the pathogenic fungi was inhibited more by BOA and MBOA than by their related fungal metabolites. The tolerance of Gaeumannomyces spp. for benzoxazolinone compounds is correlated with their detoxification ability. The ability of Gaeumannomyces isolates to cause root rot symptoms in wheat (cultivars Rektor and Astron) parallels their potential to degrade wheat allelochemicals to nontoxic compounds.
منابع مشابه
Take-all or nothing
Take-all disease of Poaceae is caused by Gaeumannomyces graminis (Magnaporthaceae). Four varieties are recognised in G. graminis based on ascospore size, hyphopodial morphology and host preference. The aim of the present study was to clarify boundaries among species and varieties in Gaeumannomyces by combining morphology and multi-locus phylogenetic analyses based on partial gene sequences of I...
متن کاملGenome Sequences of Three Phytopathogenic Species of the Magnaporthaceae Family of Fungi
Magnaporthaceae is a family of ascomycetes that includes three fungi of great economic importance: Magnaporthe oryzae, Gaeumannomyces graminis var. tritici, and Magnaporthe poae. These three fungi cause widespread disease and loss in cereal and grass crops, including rice blast disease (M. oryzae), take-all disease in wheat and other grasses (G. graminis), and summer patch disease in turf grass...
متن کاملColonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici.
Fungal root endophytes obtained from natural vegetation were tested for antifungal activity in dual culture tests against the root pathogen Gaeumannomyces graminis var. tritici. Fifteen isolates, including Acremonium blochii, Acremonium furcatum, Aspergillus fumigatus, Cylindrocarpon sp., Cylindrocarpon destructans, Dactylaria sp., Fusarium equiseti, Phoma herbarum, Phoma leveillei, and a steri...
متن کاملDiversity, Virulence, and 2,4-Diacetylphloroglucinol Sensitivity of <italic>Gaeumannomyces graminis</italic> var. <italic>tritici</italic> Isolates from Washington State
Kwak, Y.-S., Bakker, P. A. H. M., Glandorf, D. C. M., Rice, J. T., Paulitz, T. C., and Weller, D. M. 2009. Diversity, virulence, and 2,4-diacetylphloroglucinol sensitivity of Gaeumannomyces graminis var. tritici isolates from Washington State. Phytopathology 99:472-479. We determined whether isolates of the take-all pathogen Gaeumannomyces graminis var. tritici become less sensitive to 2,4-diac...
متن کاملDifferentiation of Gaeumannomyces graminis from other turfgrass fungi by amplification with primers from ribosomal internal transcribed spacers
A region comprising the 5.8S RNA gene and internal transcribed spacers 1 and 2 of the take-all patch fungus, Gaeumannomyces graminis var. avenae, was cloned and sequenced using primers from the flanking 17S and 26S ribosomal RNA genes. The sequenced region had 99% similarity between the two G. graminis isolates, and from 70% to 80% similarity between these two isolates and several other species...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 64 7 شماره
صفحات -
تاریخ انتشار 1998